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, ABSTRACT ‘

\éTaking Albert's (1976) formulation of a mixed model A¥O%A, we
consider improved estimation of the variance components for
balanced designs under squared error loss. Two approaches are
presented. One extends the ideas of Stein (1964). The other is
developed from the fact that variance components can be expressed
as linear combinations of chi-square scale parameters.
Encouraging simulation results are presented. f:;,.v'

1. INTRODUCTION

Albert (1976) exhibits necessary and sufficient conditions for
a sum of squares decomposition under a mixed model to be an ANQVA,
i.e., for the terms of tte decomposition to be independent and to
be distributed as multiples of chi-square. We consider improved
estimation of the variance components under squared error loss in
such a set-up. We make no attempt to discuss the enormous
literature on this problem. See Harville (1977) for such a
review. Rather, we specialize to the "balanced”™ case considering
designs consisting of crossed and nested classifications and
combinations thereof. Rules of thumb for formalizing the
associated ANOVA table are thus well known (see, e.g., Searle
(1971, Chap. 9)). Customary estimators of the variance components
are the unbiased ones obtained as described in Searle, pp. 405-6.
Under normality these estimators are UMVU (Graybill (1954),
Graybill and Wortham (1956)) and, in fact, restricted maximum
likelihood (REML) (Thompson (1962)). However, positive part

corrections are usually taken yielding improved mean square error

'33ton For
but sacrificing these "optimalities. Bayesian approaches to . GRARI "““EE?“—‘
variance component estimation in thls setting are discussed in, ~ TAB 0
nounced 0

e.g., Hi1ll (1965) and Box and Tiao (1973).

Since the positive part estimators are not smooth and, thus, —
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not admissible under squared error loss (SEL), it is natural to
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seek dominating estimators. The earliest work of this type is due
to Klotz, Milton and Zacks (1969) for the one~way layout. They
show, for example, that the MLE of the "between" variance
component (see Herbach (1959)), which is itself a positive part
estimator, dominates the UMVU and, using ideas of Stein (1964),
it it in turn can be dominated.

The objective of this paper is to describe two general
approaches for creating improved estimators of the variance
components under SEL. In Section 2 we develop a method by
extending the aformentioned Stein idea. We have discussed a
special case of this approach in linear regression models in
Gelfand and Dey (1987b). Since the variance components are linear
combinations of chi-square scale parameters, we can draw upon some
literature for improved estimation of linear combinations of scale
parameters. This second approach is offered in Section 3. Work
of Dey and Gelfand (1987) for arbitrary scale parameter
distributions and of Klonecki and Zontek (1985, 1987) for the
Gamma {amily of distributions is pertinent here. Finally, in
Section 4 we present some simulation results.

In the remainder of this section we develop notation for and
features of the model we will be working with. Consider the

general balanced mixed model of the form

1o

Y = .1l + « H T + Xo 4 ¢ (L.1)
r=1
where Y 1s an n x 1 vector of observations, u is an overall mean
effect or intercept, H are known n x m incidence matrices where
Tl' r
H1 =1 and H ' H = v I (i.e., v 1is the number of nonzero
r mrxl nxl r r r r
entries in a typical column of H ), T are independent distributed
T r

as N(0,0 T ), X is a known n x s design matrix involving
rm
r




possibly fixed effects and covariates, P 1s the associlated s x 1
vector of coefficients and € 1s an n x 1 vector of errors
2
distributed N(0,0 I ) independent of the Tr. Thus, Y v N(m,W)
en

where

o = ul + XB
nxl

and W is the patterned covariance matrix

P o 7
W=¢I + << HH
en rrr
r=1
2.7 2 T
Let (- ) = (= sipr e T ) . Our primary interest is in
P

estimating the :2 individually (as it has been done
historically) alzhough we shall say something in Section 3 about
simultaneous estimation.

As in Albert (1976) we consider a complete set of orthogonal

p

vy P, P ,P,P, P +P +P +P =1.

rojecti |3 p
projections, Ty» Ty p’ e’ L E i e W n

T
In particular, P 1is associated with the error, {.e., Y P Y is the
e e
full model error sum of squares. P is associated with the

T -2 =
intercept (P, = & 1 ), t.e., Y P Y = nY. where Y. is the
nxn

average of the Y's. SSH is the model sum of squares for the

p
T T -.T . T -2
reduced ANOVA model, i.e., SSH =YHMHH)HY= IZYPY+ nY.
i
i=1

where H = (Hll-l2 .». H ). Note that we have a sum of squares for

each random effect. Finally, let SS be the sum of squares for

the fixed effects and covariates adjdsted for the ANOVA, 1i.e.,




SSB[H = YTPSY. Typically, P8 is itself expressed as a sum of
orthogonal pieces.

According to Albert (1976) (see also Brown (1984) and
Harville (1984) in this regard), we have an ANOVA if and only if

T T
forr=1, 2, ..., p, HrHr Pk = ) rP , k=1, «eo, 1, HrHr Pu =

kr r
T T
>» P,HH P =X P and HH P, =X P where » =0 or v
ur ¥ rr e er e rr B Br B -r r
. T T
according to whether or not H P = 0. Then the Q = Y P Y are
r - - -
2
independent and distributed as - ~ where
=
P
2 2 A .
o= 4+ T+ o o f = rank(P ), ! =0, * =0, . =
- e “rr - - k e -
r=1
T . T
mP m/2: , . =mP m/2 ..
We note that since for each r, 1 Say(H ), © = . and,
nxl r .r r
2 . 2 T T .
thus, « = - 4+ Iy - . SinceHP =0and HP =20 " = 0 and
- e rr e : er
2
=0, t.e., + =2 and .= <, The can not be
or e e - e kr

determined e¢xplizitly without specifving the design.

However, for two random effects, with respective sums of squares
T T

Y PkY and Y Pk'Y’ 1f the latter is any nested or crossed effect

involving all the factors in the former, then Yk pd Yk,. This is ,
in fact, Rule 12 of Searle (1971 , p. 393). Obviously, \e < Yk <y
and typically there is a partial ordering amongst the Yk.

Finally, again as in Searle (1971, p. 405), if we define
T
o= (Y, Y, ev.y, Y ) with ¥ = T we have Y = A" where
0’ 1 P 0 e
1 0T
A= Cl ,;) with {Q}kr = )kr whence




c = A Y. (1.2)

Expression (1.2) reveals a key point. The variance
components are expressible as linear combinations of chi-square
scale parameters. In fact, this expression is usually employed to
create the familiar unbiased estimators of the or using f-ka,

the unblased estimator of !

2. IMPROVED ESTIMATORS USING STEIN'S METHOD

Consider estimating aYk + byk . For appropriate choices of

'
a, b, k, k' (in fact ab < 0), this parameter will be a variance
component. To proceed we utilize the following elementary lemma
whose proof is immediate.

Lemma 2.1. Let S1 be an estimator of “1 and let T1 dominate
S, under SEL. Let 82 be an estimator of ", where S? is

1

independent of Sl and Tl. Then in estimating a?l + bﬂz, a’l‘1 + bs

domirates aS1 + sz under SEL {if

2

¢bE. (S, - T )E. (S_ - -.)>0 2.1)
A5y % - (5, ) 2 (2.1)
1 2
In our applicaticns we will meet (2.1) by having ab < O, Tl S_Sl,
E_(5.) < =,
" 20— 2
2
We also require the following result which is a minor
generalization of a theorem stated and proved in Gelfand and Dey
(1987b).
Th 2.1 Let S 2+S'( + )vz
eorem 2.1. Ny Y i)y
—==== s M % 7 oM 1 Yo T a0
0 1" 1
1=1, ..., t all independent where ¢12_0, kiz_O. Deline Rj =
L ;
2 S, where ¢, = ¢ & = ceey R,
j o { e I lni + 2 and let ; min(RO, Rl' , j)
= i=




Then in estimating s under SEL 50 <« 51 <« 52 ves K ét where
Gi <KL Gj means ¢ £ dominates 61.

Lastly we need a lemma which appears, for example, in Klotz,
Milton and Zacks (1969, p. 1394).

Lemma 2.2. If T < S and, in estimating 8 > 0, $§ << T under
SEL then S+ <KL T+, under SEL where + denotes positive part.

These results will be synthesized in the following way.
Assume ayk + bYk' > 0 and w.l.0.g. that a > 0, b < 0. This will
be the case if aYk + bYk’ defines a variance component. Find the
set of all Yr Z_Yk (excluding Yk" regardless). This set is
nonempty since at the very least Y, > v . Qk and the associated

k

set of Q form the S_ and Si’ respectively, for Theorem 2.1 and
r

0
enable the creation of a wecreasing sequence of estimators which

-1
dominate (fk + 2) Qk’ the best invariant estimator of }k' The

resultant ° suitably defined play the role of Sl and T1 in Lemma
1

J 1
2.1 and will be independent of S2 = (fk' + ) Qk" ~ > 0 whence
+
Lemma 2.1 holds. Finally, using Lemma 2.2, [aS1 + sz] <L
+

T + bS .

{aT, 51
Remark 2.1. Thevrem 2.1 allows for a variety of improved

estimators for Ji. Let SO = Qe with Si being the Qr’

r=1, ..., p as well as Q.. and Qz. Then t = p + 2 and we may
readily create I . 1In fact, corresponding to any specified
permutation, -, zf the S1 there will be a resultant 5; , L.e.,
there will be t! such estimators. How might we combine them to
produce a permutation invariant estimator? It can be argued that
the minimum »f these will be "too small” and that the average is a
better practical choice. See Gelfand and Dey (1987b) for details.

We 1llustrate using the one-way ANOVA, Yi' = W+ o + €
J 1

»

1]

2 2
1=1, ..., I, §=1, «..y, J, & “N(©O, 9), €  ™“N(, C), all
i ij e

2 2.2
independent. In this case p =1 with Q1 A CHNE NG I )X
e

*1-1°




2 22

2 2
PN -+ - - ~ .
Gy ™ (o Joxy _ U and Q_ v < xp o)

2 2
2(c + Jo )
e a

2
In estimating 0 we may dominate the best invariant

e -1
estimator R0 = (I(J-1) + 2) Q3 using ée = min(Ro, Rl) which in

1
turn is dominated by '
= min(R R, R 2.2
e,2 - MRy By, Ry (2:2)
or using ¢&' L min(RO, Rl') which in turn is dominated by
e)
' = mia(R ', R 2.3
e,2 - MARgy R T, R (2.3)

’

-1 -1
Here R, = (1J + 1) (Q + Ql), Rl' = (I - L)y +3) (v +Q) and
L e e -

R, = (10 +2)(Q +Q + Q ). Estimators and - appear in
2 e 1 : e,l e,?2 2
Klotz, Milton and Zacks (1969). 1In practice, if we suspect
small we would use - o3 if we suspect .. small we would use '
< e,

and if we have no prior suspicions we would recommend

( + 002 (Z2.4)

2 2 -1
Turning to - we may write -, = J (-1 - + ) whence the usual
t e

-1 -1 -1
unblased estimator is given by J [(I - 1) Q1 = (I(J - 1)) Q.
e

-1 -1
By Lemma 2.1 this is immediately dominated by J ({(I + 1) Q1 -
_1 .
(1(J - 1)) Qe] which in turn is dominated by ‘2 LS
»
-1 ~1 -1 -1
J T[min{(I + 1) Ql, (1+2) (Q1 +Q)} - (1 - 1)) Qe]-

Using Lemma 2.2 we arrive at the positive part version 61 v
b4




Alternatively, again by Lemma 2.1, the usual unbiased

-1 -1 -1
estimator is dominated by J {[(I-1) Q1 - (I3 -1)+2) Q)
e

-1 -1 -1
which is dominated by J [(I + 1) Q1 - (I(J -1) +2) Q] which
e

is dominated by §a 5 = J—I[min{(I + 1)-1Q1, (1 + 2)-1(Q1 +Q.)}

+

.
2

-1
= (I(J-1)+2) Q]. Again by Lemma 2.2, we arrive at
+ e

1’
The estimator : 1 appears in Klotz, Milton and Zacks. Nc:i2 that

s
while £ << 7 since ¢ > ° we cannot conclude regarding
J,l Tty ,1,2 "1,1
+ +
: 1 and 5" In fact, the simulation results in Section 4 show
.l, 1

that neithe; dominates the other.

In concluding this section we remark that utilizing the ideas
{n Gelfand and Dey (1987a) and 1in Gelfana (1987), along with the
aformentioned results, we can improve in the estimation of the

ratio 'k/'k" This allows for improved estimation of, e.g.,

4

2
r/' . See Loh (1986) in this regard. We omit the details.
e
Unfortunately, we cannot extend this to, e.g., the Intraclass
correlation coefficient since it is a non-linear function of such

ratios.

3. IMPROVED ESTIMATES USING A GEOMETRIC MEANS APPROACH

In this section we develop a method for obtaining lmproved
estimates which arises from expression (1.2), the fact that the

variance components are expressible as linear combinations of chi-
bl

square scale parameters. Conslider a single v“ which we write as
r

2 P P

. k;o Ckyk and let klothk be a candidate estimator. Here

we denote Q by Qo. When can 33ka be dominated and what {s the
e




—— e ——

form of the dominating estimator? Dey and Gelfand (1987) discuss

this problem when the \k are scale parameters from arbitrary

distributions. Klonecki and Zontek (1985, 1987), assuming the

1

are scale parameters from Gamma distributions, obtain conditions

which enable assessment of linear admissibility for

2
admissibility within the class of linear estimators of -
r

~¢ka.

i.e.,

They

also offer a slightly broader class of dominating estimators than

in Dey and Gelfand {19K7).

More precisely, the following result appears 1in Dey and

Gelfand (lun™).

Theorem 3.1. Let Yi T of

2]
independent and such that EY <
i

t t L
Y oen ooyt
o, L (=1 1
i=. =1 -1
T+t
et & = ¢ - 4 where a3 = E(Y
{ 1 i i i
d = ain d , d aan d
() i* S ‘
i i
under SEL in estimating Ci if either
(1) d > G and 0 < b < 2td
) (1) (1)
(t)
(11) d < 0 and 2td . < b <O
(t)
t ~1 -1
. t 2t
where . = E(Y = 1)/E(Y
i=; i i i
=4

If we denote by G(;i,‘i) the gamma

1

Consider the

1)

t
JE(Y
1

Then (3.1) dominates

-1

ey U, t > 2,

estimator

P

density fi(Y) =

(3.

1)

1)

and
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ﬂ_l e—Y/Eqi -1 -1
zL*I_°—_'"‘—_, then a = ui +t  and r= i ta; + t_])/ (ui + 2t .
8 T(ui) 1

Now let D be a diagonal matrix whose diagonal entries are the
and let G be of the form :d-E where © is a nonnegative
definite matrix such that (L‘.)ij >0, (3)ii > 0 and L4 is a
diagonal matrix whose diagonal entries are (f)ii. Then Klonecki
and Zontek (1985) show:
Theorem 3.2. If Y1 ¢ G(ai, ?1) i =1 ...t independent, then

E“yi is linearly admissible for Ci'i if and only if there exists
i

a matrix G of the above form such that (I + GD): = Gc where

T. ( ERRER t), cT = (Cl’ ey ct).

Theorem 3.1 is often too restrictive. If instead we allow a

4]
more geueial product Yi we can choose q . to achieve suitably
defined ”di" all having‘the same sign. Ianact, for a specified
set of g, > 0 such that g, = 1l Klonecki and Zontek (1987), again
for gamma distributions, pgovide necessary and sufficient
conditions for the existence of an estimator of this form which
{mproves upon ’xiYi. We state a version of their Lemma 1 which is
in a form parallel to Theorem 3.1.
Theorem 3.3. f Yi G(xi, *1) i =1 ...t independent there

exists b # O such that the estimator
Y + by, (3.2)
id :
where q, > 0, ' q = 1, dominates :;iyi under SEL, in estimating
5=

lci:i if and only 1f either (i) or (ii) below holds. Define di* =
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c - (a + qi)?i, d* = min d * and d

* = max d *.
i 1 (iy - M"Y (ty ™

i

(1) d4,* >0, qi =0 1if d; J and 0 < b < b*

(1) =

11) d* <0, q =0 if d*
(1) = 9 i

0 and -b* < b <0
(t)

a, +q, o kS

where b* = 2 T (—l————l— ) i—lv )
. a."”ZQ. ;q.}

{J:dj#O} j j P

Remark 3.1. Theorem 3.3 holds more generally than for the
gamma family. TIts proof only requires specification of the
1+q qQ i .
‘ = 1)/ECY. . “ = 1).
1 i
(In the gamma case wi(q) = , + q). Given w, we can characterize
i

i
the sets of q's which make the corresponding d*'s all have the
j i

in~reasing functions w _(q) - E(Y,
i i

same sign, thus enabling domination by (3.2).

Remark 3.2. The bounding of the risk difference in Theorem
3.1 is not as sharp as is possible under the Gamma assumption in
Theorem 3.3; hence, the resulting bounds on b in Theorem 3.3 when
all qJ are equal are more liveral than those in Theorem 3.1.

2
Returning to the estimation of a variance component =~ =
r

D P
ck-k consider the estimator - ‘ka where ’k =
k=0 k=0
-1

c.k.(fk + ch) , 0< o < 1l. The terms ;ka range from the
unblased to the best invariant estimator of Ck'k as ;k ranges from
0 . Si U ‘ '

to 1 Since W is G(. (k’ 2 k),

d* = - f + 27 3.3
. Ck( " qk)/( " k) (3.3)

2
If ck = 0 we must set qk = 0. Thus, if y does not appear in Vr’
2
using Theorem 3.3, Qk does not help in estimating < . This
r

clearly differs from the approach in Section 2 where, for example,
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in estimating Oi all the Qk can be used to improve upon the best
invariant estimator. Note that with Qk as defined above, from
(3.3), the sign of dt depends only upon Sgn(Ck(Ek - qk)); for
specified Ek and 9 the magnitude of e does not play a role with
respect to whether an estimator of the form (3.2) can dominate.

From (3.3) if all Ek = 0 or all €k = 1 this approach will
provide a dominating estimator if and only if at least two ck
differ from 0 and all nonzero ck have the same sign. For a
variance component some pair of ck will have opposite signs.
Therefore, a dominating estimator will not be obtained if for any
such pair both ¢'s are 0 or both ¢'s are 1. If we can choose qk
to make d(;) £ 0 then the dominating estimator in (3.2) will be
a "shrinker.” Hence, using Theorem 2.3, the positive part of

P +
(3.2) will dominate [ - Q] .
=0 kk

In this spirit it is natural to ask whether the approach of
this section can be combined with that of the previous section.
Can we improve upon the estimators developed through Lemma 2.1 and
Theorem 2.1 using a more general version of Theorem 3.3 as
suggested in Remark 3.1? The answer appears to be no since in the
notation of Theorem 2.1 0 is not a scale parame.er for the
distribution of ;j' The reader might suggest that WO could be

¢ under

viewed as a scale parameter for the distribution of
suitable conditioning. Following the argument leading to Theorem
3.3, while b must be chosen unconditionally, it would have to
provide impruvement at each conditional level. We can readily
show that even In the simplest case, t = 2, no b unequal to O can
achieve this.

As an example, we turn again to the one-way ANOVA using the
notation in Section 2. Recalling 62 = J.l(,1 - Ye) we consider

dominating the estimator
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-1 -1 -1
- - - + 2 3.4
JOHI -1+ 2e0) Ql (1IQJ -1 ee) Qe] (3.4)
Thus, dl* 2 0 as 9, § tl, de* 2 0 as a, 2 ee. As noted above,

this approach unfortunately does not provide a dominating

estimator in the two important cases where El = ¢ =0 and where
e

e =¢ =1, Instead, we take

(1) ¢ =1,¢ =0 for which any ;s 9y >0, q + q, = 1 work

1 e 1
with
- 1) + J=-1)+2
0<b<2(I ) ?-q1 I( ) q,
- X
J(I-1)+4q I -1)+ 4q,
1 -gq
1 q 1 q
—) 1 —_— ) 2
(ql(I + 1)) (I(J - 1))

and (3.2) becomes

q q

-1 -1 -1 1 e
J [(Ir+1) Q -(I(J-1) Q]+bQ Q (3.5)
1 e 1 e
I = 5 = + =1 k
(11) 1 0, . 1 for which any a5 q2 > 0, 9, a, wor
with
(1 -1)+ 2q I(J - 1) + 2q
1 2
0>b>-— X
J (1 -1) + Aql (I1(J - 1) + 4q2
Lt % ) 2
I-1 q,[1(J - 1) + 2]

and (3.2) becomes
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q q
-1 -1 ~1 1 e
J [(I1-1) @ -@@J-1)+2) Ql+bQ Q (3.6)
1 e 1 e

We conclude this section with a remark.

Remark 3.3. Results applicable to the simultaneous
estimation of variance components under unweighted SEL are given
in Klonecki and Zontek (1987). In particular, extensions of
Theorems 3.2 and 3.3 are given for the estimation of a vector CTG
using LTY. The special case C = I (not of interest here) has been
extensively discussed. See, e.g., Berger (1980), Das Gupta
(1986), Dey and Gelfand (1987), and Das Gupta, Dey and Gelfand
(1987).

4. SIMULATION RESULTS

In the one-way ANOVA we studied improved estimation of both
72 and 7% by undertaking a substantial simulation study over
VZFiOuS values of I, J, 1, ?i and ci. Each case received 10,000
replications. Even with so many replications, resimulation of
particular cases suggests that the stated percent improvements
(PI's) will only be accurate within 2%.

In estimating - some selected cases are presented in Table
1. 1In this table PIeis relative to the best invariant estimator
given above (2.2). Not surprisingly (2.2) outperforms (2.3) when .
is small, and vice versa when T is small. Thg es;imator (2.4)
seems like a good compromise. For fixed (4, O Ce), PI's
increase in I, decrease in J. Although the PI's are small the
fact that (2.2)-(2.4) are so simple to calculate encourages their
use.

In the estimation of Gi, the reference estimator is the

pcsitive part of the unbiased estimator.

Q, Q, +

{ - —— .
I-1 I(J—l)] /3 (4.1)
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TABLE 1
2
PERCENT IMPROVEMENTS IN ESTIMATING o
e

PI for
2 2
(y, ¢, o) (2.2) (2.3) (2.4)
a e
I1=2,J=5 (0, 1, 10) 2.60 2.39 2.65
(1, .1, 10) 1.95 2.27 2.28
(1, 1, 1) 1.39 0.78 1.24
I =5,J1=25 (0, 1, 10) 4,09 2.98 3.72
(1, .1, 10) 3.64 3.36 3.95
(1, 1, 1) 0.72 0.15 0.50
1 =10, J3=5 (0, 1, 10) 4,97 3.86 4.53
(1, .1, 19) 6.09 3.92 5.69
(1, 1, 1) 0.15 0.03 0.10
As shown in Section 2, (4.1) is dominated by
Q, Q. +
[ - =—) /3 (4.2)
I +1 I(J-1)
and by
Q Q  +
[ - 1/3 (4.3)

I+1 I(J-1)+ 2

Neither of (4.2) and (4.3) dominates the other. However, from
Section 2,£c!;dominates (&.2),$a’; dominates (4.3). For b
sufficiently small (3.5) dominates (4.2) ignoring the positive
parts. With positive parts applied to both estimators this 1s no

longer true. Since there is no obvious optimal choice we took b
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at the middle of the allowable range.

In Table 2 we compare ¢ : and % ; with (4.1). We see

’
enormous improvement for both, that the PI's are essentially
indistinguishable and that neither of the ¢'s dominates the other.
We would draw the same conclusions in the comparison of (4.2) and
(4.3) with (4.1). Of course, if oi > GZ then 6& 1 will tend to
>
be nonnegative whence the domination result in Section 2 argues
for ﬁu:. Turning to a comparison of 6a+2 with (4.3) we see
s

that 1f u {s small the gain may be substantial. A comparison of
ﬁh: with (4.2) would yield essentially the same magnitudes of
improvement. Again, since these estimators are so simple to
calculate, their use is encouraged. Finally, the comparison of
the positive part of (3.5) with (4.2) is discouraging when 73 is
smaller than ‘2. Modest improvement will usually occur when
:2 > :2. Thiseis reasonable since then the positive part

e
modification is rarely applied and the dominance result comes into

play.
2 + 2
We conclude by recommending (2.4) for - and: ) for < .
e Xy ¢
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2
PERCENT IMPROVEMENTS IN ESTIMATING O,

PI's
+ +

o 50,1 vs 6a,2 vs 6&,2 vs (3.5) vs

(b, ¢35, ¢2) (4.1) (4.1) (4.3) (4.2)

I1=2,J=5 (0, 1, 1) 92.22 91.96 17.67 -53.73
(0, 1, .1) 66.49 66.69 1.10 3.19

(0, 1, 1) 70.61 71.31 2.10 3.78

(1, .1, 1) 90.80 90.32 1.87 -53.68

(1, 1, .1) 66.44 66.64 .90 3.29

(1, 1, 1) 71.51 72.14 1.74 3.44

I=5,J=5 0, .1, 1) 68.55 67.72 14.90 ~-172.38
(o, 1, .1) 33.33 33.61 1.57 6.46

(0, 1, 1) 35.24 37.03 0.03 -174.08

(1, 1, .1) 32.08 32.33 0.63 6.56

(1, i, 1) 33.42 35.08 0.71 3.59

I1=10,J= (o, .1, 1) 44,49 43.92 8.73 -336.81
(0, 1, .1) 19.55 19.73 1.35 3.77

(0, 1, 1) 19.39 20.88 1.33 -27.04

(1, .1, 1) 40.47 39.21 0.00 -338.97

(1, 1, .1) 18.81 18.91 0.10 3.60

(1, 1, 1) 18.39 19.68 0.20 -25.85
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